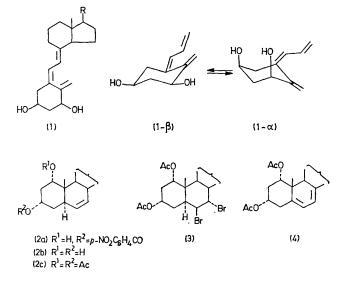
Conformation Equilibria in Vitamins D. The Synthesis of 1α -Hydroxy-3-epivitamin D₃ (1α -Hydroxy-3 α -cholecalciferol)


By Mordechai Sheves, Elisha Berman, Dalia Freeman, and Yehuda Mazur*

(Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel)

Summary The ratio of the two conformers of $l\alpha$ -hydroxy-3-epivitamin D_3 , which has been synthesized from $l\alpha, 3\beta$ -dihydroxycholest- Δ^6 -ene, has been established.

RECENT ¹H n.m.r. studies of cholecalciferol¹ and ergocalciferol² (vitamin D_3 and D_2) have confirmed Havinga's suggestion of a rapid equilibrium in solution between two, almost equally populated, ring A α and β -chair conformations (in which the =CH₂ group lies below and above the ring plane respectively).³ A similar conformational equilibrium was also found for the related 1,3-trans-diol, the biologically potent 1α -hydroxycholecalciferol¹ and it was proposed that its hormonal activity was related to the fact that the β -conformation has an equatorial OH substitutent at C(1).^{1,4} We have now synthesized the 3-epimer of 1α -hydroxycholecalciferol, in order to find the ratio of the two conformers, and to establish its biological activity.

The starting material was the previously described $l\alpha, 3\beta$ dihydroxycholest- Δ^{6} -ene⁵ which was epimerized at C(3) (EtCO₂N=NCO₂Et-Ph₃P-*p*-nitrobenzoic acid in THF⁶) resulting in the $l\alpha, 3\alpha$ -diol 3-*p*-nitrobenzoate (2a) m.p. 183-184°. Hydrolysis (5% KOH in MeOH) to the diol (2b) (75% from the starting diol) (m.p. 207-208°) followed by acetylation (N-dimethylaminopyridine-Ac₂O in CH₂Cl₂) led to the diaxial diacetate (2c) [m.p. 95-96°, δ (CDCl₃) 4·85 (1H, t, 1 β -H, J 3 Hz, and δ 5·16 (1H, quintet, 3 β -H, J 3 Hz)], which on bromination (Br₂ in CH₂Cl₂) gave the dibromide (3) (69% from (2a)] (m.p. 120-121°). The dibromide (3) was dehydrobrominated (HMPA-Et₃MeN⁺-Me₃PO₂⁻-CaCO₃, 110°, 10 h)^{6,7} to a 5:1 mixture of the $\Delta^{4,6}$ -diene (λ_{max} 236, 240, and 249 nm) and the $\Delta^{5,7}$ -diene $(\lambda_{\max} 281, 292 \text{ nm})$. The $\Delta^{5,7}$ -diene (4) was irradiated, without isolation, in Et₂O (Rayonet, 300 nm, NaNO₃ filter, 0°, 40 min) then heated at 70° for 2 h, and hydrolysed (5% KOH in MeOH, 0°, 0.5 h) resulting in a mixture from

which (1), m.p. 114—116°, $[\lambda_{max} 264 \text{ nm} (\epsilon 17.00) \text{ and on} addition of I_a, \lambda_{max} 272 \text{ nm}]$ was isolated [5% from (3)] by t.l.c. This compound shows identical peaks in the mass spectrum and a similar ¹H n.m.r. spectrum to its epimer 1α -hydroxycholecalciferol.⁸ In the ¹H n.m.r. spectrum of (1) δ (CDCl_a), 5.00 (1H, d, 19Z-H, J 2), 5.28 (1H, m, 19E-H), 6.01

(1H, d, 6-H, J 11.5), and 6.40 (1H, d, 7-H, J 11.5 Hz) the protons at C(1) and C(3) appear at 4.04 and 4.30 p.p.m. as triplet and quintet respectively with an identical J 4.4 Hz. Assuming this coupling constant represents an averaged value of ${}^{3}J_{\text{axax}}$ 11 Hz and ${}^{3}J_{\text{eqeq}}$ 3 Hz, the calculated proportion of the two conformers $(1-\alpha)$ and $(1-\beta)$ in CDCl₃ is 80:20.9 It appears that the preponderance of the 1,3diaxial conformer in solution derives from the H-bonding between the two OH groups.¹⁰

We thank Dr. Z. V. I. Zaretskii for the mass spectral determinations.

(Received, 30th April 1975; Com. 493.)

- ¹ R. M. Wing, W. H. Okamura, M. R. Pirio, S. M. Sine, and A. W. Norman, Science, 1974, 186, 939.
 ² G. N. La Mar and D. L. Budd, J. Amer. Chem. Soc., 1974, 96, 7317.
 ⁸ E. Havinga, Experientia, 1973, 29, 1181.
 ⁴ W. H. Okamura, M. N. Mitra, R. M. Wing, and A. W. Norman, Biochem. Biophys. Res. Comm., 1974, 60, 179.
 ⁵ D. Errerron A. Asher and Y. Marri, Tetrahoferen Letters, 1975, 261.
- D. Freeman, A. Acher, and Y. Mazur, Tetrahedron Letters, 1975, 261.
 A. K. Bose, B. Lal, W. A. Hoffman, and M. S. Manhas, Tetrahedron Letters, 1973, 1619.
- ⁷ J. L. Kraus and G. Sturz, Bull. Soc. chim. France, 1971, 2551.
- ⁸ M. R. Haussler, J. E. Zerwekh, R. H. Hesse, E. Rizzardo, and M. H. Pechet, Proc. Nat. Acad. Sci. USA., 1973, 70, 2248.
 ⁹ F. A. L. Anet, J. Amer. Chem. Soc., 1962, 84, 1053.
- ¹⁰ H. Buc, Ann. Čhim., 1963, 8, 409.